Probability (प्रायिकता) short tricks in Hindi । Math Short Tricks in Hindi । Probability PDF
Short tricks of math with concept and formulas are available in this particular article. You can also get PDF notes and practice sets of probability in Hindi and English.
probability
Probability की शोर्ट ट्रिक्स की पीडीएफ
Probability की एक क्लासिक परिभाषा है कि एक घटना घटित होगी,
जिसका अर्थ है कि संभावित मामलों की कुल संख्या के अनुकूल मामलों की संख्या
का अनुपात, बशर्ते कि सभी मामले समान रूप से होने की probability हो।
probability हमेशा 0 और 1 के बीच होती है।
Probability (प्रायिकता) का परिचय
क्रमपरिवर्तन और संयोजन की तरह, प्रायिकता शब्द की समस्याएँ प्रतियोगी परीक्षाओं में अक्सर दिखाई देती हैं। इस लेख में, हम बुनियादी probability सिद्धांत और संभाव्यता समीकरणों को कवर करेंगे।परिभाषा
प्रायिकता की एक क्लासिक परिभाषा मौका या probability है कि एक घटना घटित होगी, जिसका अर्थ है कि संभावित मामलों की कुल संख्या के अनुकूल मामलों की संख्या का अनुपात, बशर्ते कि सभी मामले समान रूप से होने की probability हो। probability हमेशा 0 और 1 के बीच होती है।- यदि किसी घटना के होने की probability 0 है, तो यह एक असंभव घटना है।
- यदि किसी घटना के होने की probability 1 है, तो यह एक निश्चित घटना है।
अब गणित में probability को हल करते समय, हमें विषय की कुछ विशिष्ट परिभाषाओं का उपयोग करना होगा, जो नीचे दिए गए हैं।
प्रयोग के प्रकार:
प्रायिकता सिद्धांत का अध्ययन करते समय, हम अक्सर which प्रयोग ’शब्द का उपयोग करेंगे जिसका अर्थ है एक ऑपरेशन जो अच्छी तरह से परिभाषित परिणाम उत्पन्न कर सकता है। दो प्रकार के प्रयोग हैं:- (i) नियतात्मक प्रयोग: वे प्रयोग जिनके परिणाम सटीक परिस्थितियों में किए जाने पर समान होते हैं, नियतात्मक प्रयोग कहलाते हैं। जैसे सभी प्रयोग रसायन विज्ञान प्रयोगशाला में किए जाते हैं।
- (ii) रैंडम प्रयोग: वे प्रयोग जिनके परिणाम 1 से अधिक हैं जब सटीक परिस्थितियों में किया जाता है तो रैंडम प्रयोग कहा जाता है। जैसे यदि सिक्का उछाला जाता है तो हमें एक सिर या एक पूंछ मिल सकती है।
Probability में घटनाएँ:
जब हम कोई प्रयोग करते हैं, तो कुछ परिणाम होते हैं, जिन्हें ईवेंट कहा जाता है। आइए हम विभिन्न प्रकार की घटनाओं का अध्ययन कर सकते हैं।परीक्षण और प्राथमिक घटनाएँ: यदि हम सटीक परिस्थितियों में एक यादृच्छिक प्रयोग दोहराते हैं, तो इसे परीक्षण के रूप में जाना जाता है और सभी संभावित परिणामों को प्राथमिक घटनाओं के रूप में जाना जाता है। जैसे यदि हम एक पासा फेंकते हैं तो इसे एक परीक्षण कहा जाता है और 1, 2, 3, 4, 5 या 6 प्राप्त करना प्राथमिक घटना कहा जाता है।
यौगिक घटना: जब दो या अधिक प्राथमिक घटनाओं को संयोजित किया जाता है तो इसे यौगिक घटना के रूप में जाना जाता है। जब हम पासा फेंकते हैं, तो एक अभाज्य संख्या प्राप्त करना यौगिक घटना है क्योंकि हम 2, 3, 5 प्राप्त कर सकते हैं और सभी प्रारंभिक हैं।
मामलों की अत्यधिक संख्या: यह कुल संभव परिणाम है। जब हम एक पासा फेंकते हैं तो कुल संख्या 6 होती है। जब हम एक जोड़ी पासा छोड़ते हैं तो कुल संख्या 36 होती है।
पारस्परिक रूप से अनन्य घटनाएँ: इसका मतलब है कि एक साथ घटना संभव नहीं है। सिक्के को उछालने के मामले में, या तो सिर आएगा या पूंछ आएगी। तो, दोनों परस्पर अनन्य घटनाएँ हैं।
समान रूप से मामले: इसका मतलब है कि probability बराबर हैं। जब हम पासा फेंकते हैं, तो प्रत्येक परिणाम के बराबर मौका होता है। तो यह समान रूप से probability है।
कुल मामलों की संख्या: जैसा कि नाम से पता चलता है, परीक्षण की प्राथमिक घटनाओं की कुल संख्या को मामलों की कुल संख्या के रूप में जाना जाता है।
अनुकूल घटनाएँ: किसी प्राथमिक घटना के वांछित परिणाम को अनुकूल घटना कहा जाता है। जैसे जब हम एक पासा फेंकते हैं और यह पूछा जाता है कि 3 की एक बहु प्राप्त करने की probability क्या है? इस मामले में अनुकूल मामले 2 (3 और 6) हैं और कुल मामले स्पष्ट रूप से 6 हैं।
स्वतंत्र घटनाएँ: दो घटनाओं को स्वतंत्र कहा जाता है यदि एक घटना के परिणाम दूसरे के परिणाम को प्रभावित नहीं कर रहे हैं। यदि हम एक सिक्का उछालते हैं और एक पासा फेंकते हैं तो सिक्के का परिणाम सिक्के के परिणाम से स्वतंत्र होता है, दोनों स्वतंत्र घटनाएं हैं।
प्रायिकता सूत्र
सरल भाषा में probability को कुल मामलों के अनुकूल मामलों के अनुपात के रूप में परिभाषित किया गया है।
किसी भी घटना के होने की probability P (A) = fav। मामलों की संख्या / कुल सं। मामलों के = एन / एनयदि p किसी घटना A के होने की probability है, तो उस घटना के नहीं होने की probability P (p) = 1 p है
संभाव्यता समीकरण: P (A) Equ 1, P (A) + P (=) = 1।
- जोड़ प्रमेय: P (X या Y) = P (X) + P (Y) - P (X∩Y)
- या P (X PY) = P (X) + P (Y) - P (X )Y)
- p = p1 + P2 + ... + p (n-1) + p (n)
- या P (A या B) = P (A) + P (B) [जहां A और B परस्पर अनन्य घटनाओं को दर्शाते हैं]
स्वतंत्र घटनाएँ: दो घटनाएँ स्वतंत्र होती हैं यदि एक घटना की घटना अन्य घटनाओं की घटना को प्रभावित नहीं करती है। इसलिए, n स्वतंत्र घटनाओं के लिए, संभाव्यता स्वतंत्र घटनाओं की सभी probabilityओं की उपज है:
- p = p1 x P2 x ... x p (n-1) x p (n)
निश्चित घटना के पक्ष में विषमताएँ = सफलताओं की संख्या: असफलताओं की संख्या
एक घटना के खिलाफ बाधाओं = विफलताओं की संख्या: सफलताओं की संख्या
प्रायिकता पर प्रश्नों को हल करने के लिए, आपको प्रमुख संभाव्यता फ़ार्मुलों को संशोधित करने की सलाह दी जाती है, 20 से 25 प्रायिकता के उदाहरणों और समाधानों पर जाएँ और लगभग 100 प्रायिकता समाधानों को हल करें। ऐसा करने के बाद, आप अपने दम पर probability समस्याओं को हल करने के लिए आत्मविश्वास महसूस करेंगे।
0 Comments
Thanks for comment!